摂南大学 \int

農学部

ゲノムの動態を捉える

ゲノム生物学から，作物の機能探索・ゲノム検査技術開発•市民教育へ おぼかた じゅんいち教授 小保方 潤— （ゲノム生物学研究室） $\begin{array}{lll}3 \cdots & 4 \cdots \\ -w_{0} & 11\end{array}$ 9 NNN E－mail junichi．obokata＠setsunan．ac．jp
キーワード ゲノム機能 遺伝子の水平転移 共生進化 光合成動物 エピゲノム解析

研究概要

背景

■ ゲノムは単なる遺伝子の集合体ではなく，統合的に機能するための動態や仕組みを備えています。
■ ゲノムの動態を，人工進化実験や，特殊な生物（光合成能力を備えた動物）を使って研究しています。
■ 生物種を超えた遺伝子の水平転移は農業管理上の悩 ましい問題ですが，その仕組みはまだ未解明です。

目的

■ ゲノムの動態を制御する仕組みを解明し，その知見 を育種や農業生産，医療技術などに応用します。

主な成果

■ イネゲノムの研究から，植物ゲノムのダイナミック な動態を明らかにしました。
■ 植物ゲノムに「発現するはずのない遺伝子断片」が挿入されても，実は一定のルールに従って発現され るという現象を発見しました。
－遺伝子の水平転移には，ゲノムのエピゲノム状態 （DNA配列以外の微細なゲノム構造）が重要なことを明らかにしました。

連携への展望

【医療検査•種苗育種との連携】

エピゲノム情報はDNA配列だけでは決まらない生物の諸性質に関わっており，様々な分野でその注目度を増して います。微弱なエピゲノム状態の変化をハイスループッ ト・高感度で捉える汎用エピゲノム診断技術（MoDEM法）を開発中です。医療や育種を含む広範な分野での実用化を目指しています。

【ゲノム教育と教材開発】

21世紀のゲノム生物学を学校•市民教育に取り入れるた めの教材を開発しています。

イネゲノムの動態研究（小保方 生命誌56 JT生命誌館より）

高感度エピゲノム診断技術

MoDEM：Modular Detection of Epigenetic Markers

汎用エピゲノム解析技術の開発と実用化

光合成動物を用いたゲノム進化の教材開発。光合成有殻アメーバー（左）と光合成ウミウシ（中•右）

アピールク゚イント

ゲノムの動態について新しい視点から研究を進め，その知見を新規の汎用エピ ゲノム診断技術の開発•実用化につなげます。教材開発も進めています。

