

Enzymatic Synthesis of Optically Active Compounds

Prof. Masaru WADA

(Department of Applied Biological Science)

Key Words Enzymatic or Fermentative Production of Useful Compounds

Outline of Research

Backgrounds

- Reduction of environmental load is important issue in chemical industry.
- It is very difficult and high-cost to achieve stereo-specific production by organic synthesis technique.
- Stereo-specific synthesis is one of the strong fields in enzymatic reaction.

Aim

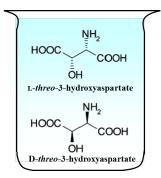
- To achieve stereo-specific synthesis of optically active useful alcohols or amino acids using enzymes.
- To introduce environmental friendly production methods using biological sciences.

Results

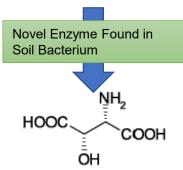
- I have found novel enzymes useful for production of optically active alcohols or amino acids.
- I have experiences isolating useful microorganisms from environment, such as soil.
- I have been also studying sulfur-containing amino acid metabolism in bifidobacteria.

Industrial Application

[Collaboration with Chemical Industry]


- Efficient production system using enzymes.
- · Complex chiral compounds synthesis.
- · Reduction of environmental loads.

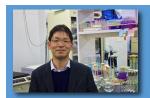
[Collaboration with Food Industry]


 Isolating yeast useful for bread baking or sake brewing.

(Science Communication)

• Genetically modified microorganisms used in other than "food fields".

ACHIRAL MIXTURE



Optically Active Amino Acids

Doubly-chiral amino acid synthesis using enzymes.

Bifidobacteria promoting human health

Research Strengths